Text Reference Scheme

Brian Cantwell Smith

Text references are in the form $x / y / z$:
A. x is the page number
B. y is the paragraph number
I. y omitted $\quad \Rightarrow$ no \llbracket; if z is present, overall reference is to the $z^{\text {th }}$ line on page x; else all of page x
2. $y=0 \quad \Rightarrow$ partial \mathbb{I} at the top of page (cont'd from previous page)
3. $y>0 \quad \Rightarrow y^{\text {th }}$ paragraph that starts on page x
4. $y<0 \quad \Rightarrow$ count up from the bottom (so -I is the last \mathbb{T} that starts on the page)
5. Footnotes are indicated as paragraph $n 1, n 2$, etc.
6. Section headings aren't considered to be paragraphs; however, indented points (e.g., bulleted or numbered) are considered full paragraphs, and so are counted.
7. Tables, figures, etc., aren't considered $\mathbb{T} s$; they should be referred to explicitly
C. z is the line number
I. z omitted $\quad \Rightarrow$ no line number; if y is present, then whole $\mathbb{\pi}$; else whole page
2. $z>0 \quad \Rightarrow$ if y is present, $z^{\text {th }}$ line in the $\mathbb{\Pi}$; else $z^{\text {th }}$ line on the page
3. $z<0 \quad \Rightarrow$ count up from the bottom of \mathbb{T} or page ($-I$ is the last line)
4. Example: 8/-I/-3 means the third-from-last line on page 8 , even if the last paragraph on the page (-1) continues onto the next page (where it becomes $9 / 0 / \ldots$).
D. In general, $x_{1}: x_{2}, y_{1}: y_{2}$, and $z_{1}: z_{2}$ mean from x_{1} to x_{2}, etc. (for any of pages, paragraphs, or lines). Missing values are defaulted from the left. So:
I. $23 / 4 / 5: 7$ means lines 5 through 7 in the $4^{\text {th }} \boldsymbol{T}$ on page 23
2. $23 / 2 / 6: 4 / 3$ means from the $6^{\text {th }}$ line of the $2^{\text {nd }} \boldsymbol{\pi}$ through the $3^{\text {rd }}$ line of the $4^{\text {th }} \boldsymbol{\square}$ on page 23 .
3. $23 / 1: 24 / 7$ means from the $1^{\text {st }} \mathbb{T}$ on page 23 through the $7^{\text {th }} \mathbb{\|}$ on page 24 .
4. $127 / 2 / 9$: $128 / 4$ would mean the $9^{\text {th }}$ line of the $2^{\text {nd }} \mathbb{T}$ on page 127 through the $4^{\text {th }}$ line of the $128^{\text {th }} \mathbb{T}$, which is probably not what was intended. To signify the $9^{\text {th }}$ line of the $2^{\text {nd }} \boldsymbol{\pi}$ on page 127 through the $4^{\text {th }}$ II on page 128, use 127/2/9:128/4/
5. $127 / /-9: 128 / / 4$ means the $9^{\text {th }}$ line from the bottom on page 127 through the $4^{\text {th }}$ line on page 128 .

